
Details of Technical Progress 5P41 -RR00785-15 

lll.A.2.3. Core Al Research 

1 - Rationale 

Artificial Intelligence (Al) methods are particularly appropriate for aiding in the 
management and application of knowledge because they apply to information 
represented symbolically, as well as numerically, and to reasoning with judgmental 
rules as. well as logical ones. They have been focused on medical and biological 
problems for well over a decade with considerable success. This is because, of all 
the computing methods known, Al methods are the only ones that deal explicitly with 
symbolic information and problem solving and with knowledge that is heuristic 
(experiential) as well as factual. 

Expert systems are one important class of applications of Al to complex problems 
-- in medicine, science, engineering, and elsewhere. An expert system is one 
whose performance level rivals that of an human expert because it has extensive 
domain knowledge (usually derived from an human expert); it can reason about its 
knowledge to solve difficult problems in the domain; it can explain its line of 
reasoning much as an human expert can: and it is flexible enough to incorporate new 
knowledge. without reprogramming. Expert Systems draw on the current stock of 
ideas in Al, for example, about representing and using knowledge. They are 
adequate for capturing problem-solving expertise for many bounded problem areas. 
Numerous high-performance, expert systems have resulted from this work in such 
diverse fields as analytical chemistry, medical diagnosis, cancer chemotherapy 
management, VLSI design, machine fault diagnosis, and molecular biology. Some of 
these programs rival human experts in solving problems in particular domains and 
some are being adapted for commercial use. Other projects have developed 
generalized software tools for representing and utilizing knowledge (e.g., EMYCIN, 
UNITS, AGE, MRS, BBl, and GLisp) as well as comprehensive publications such as 
the three-volume Handbook of Artificial Intelligence and books summarizing lessons 
learned in the DENDRAL and MYCIN research projects. 

There is considerable power in the current stock of techniques, as exemplified by 
the rate of transfer of ideas from the research laboratory to commercial practice. 
But we also believe that today’s technology needs to be augmented to deal with the 
complexity of medical information processing. 

Our core research goals, as outlined in the next section, are to analyze the 
limitations of current techniques and to investigate the nature of methods for 
overcoming them. Long-term success of computer-based aids In medicine and 
biology depend on improving the programming methods available for representing and 
using domain knowledge. That knowledge is inherently complex: it contains mixtures 
of symbolic and numeric facts and relations, many of them uncertain; it contains 
knowledge at different levels of abstraction and in seemingly inconsistent 
frameworks; and it links examples and exception clauses with rules of thumb as well 
as with theoretical principles. Current techniques have been successful only insofar 
as they severely limit this complexity. As the applications become more far- 
reaching, computer programs will have to deal more effectively with richer 
expressions and much more voluminous amounts of knowledge. 

Expert systems are being developed that impact nearly every field of human 
endeavor: medicine, manufacturing, financial services, diagnosis of machinery, 
geology, molecular biology and structural design, to name a few. Each new instance 
is a confirmation of the hypothesis that knowledge is power. in each system, expert 
level problem-solving performance is obtained by using relatively simple and uniform 
reasoning methods which access an extensive body of domain knowledge. The 
ability of these systems lies not in their superior reasoning capabilities but in the 

E. H. Shortliffe 26 



5P41 -RR00785-15 Details of Technical Progress 

specific concepts, facts, methods, models, etc. that can be brought to bear on the 
problem. The know/edge is power hypothesis has received so much confirmation 
that we now assert it as the knowledge principle. A corollary to the Knowledge 
Principle is that significant improvements in the power of knowledge-based systems 
will be derived primarily from the ability to access large amounts of knowledge. 

During the past year we have begun to explore the design and use of very large 
knowledge bases. In the last twenty years we have learned how to build intelligent 
programs that perform at a high level of competence on specialized tasks within 
narrowly defined domains. These programs traditionally access small to modest- 
sized knowledge bases specialized to the prescribed task. In contrast, we have 
started on a long-range research effort that will result in a large, multi-use 
knowledge base (LMKB). 

We believe construction of a LMKB is an essential step toward resolving two 
fundamental problems plaguing the current generation of expert systems. The first is 
brittleness: current systems can exhibit only a very narrow range of expert behavior, 
and their performance falls off precipitously at the limits of their expertise. The 
second problem is over-specialization: a knowledge base constructed to support of 
one type of expert task (e.g., diagnosis) cannot be used to support other types of 
tasks (e.g., design). 

Our hypothesis is that both the problems of brittleness and over-specialization can 
be addressed by constructing large, multi-use knowledge bases. A LMKB would 
1) encode domain knowledge in greater depth and breadth than required for any 
specific task, 2) encode knowledge that cuts across many domains of expertise, and 
3) serve as a core repository of knowledge to be accessed by large numbers of 
specific applications. 

This report documents progress on the basic or core research activities within the 
Knowledge Systems Laboratory (KSL), funded in part under the SLlMEX resource as 
well as by other federal and industrial sources. This work explores a broad range of 
basic research ideas in many application settings, all of which contribute in the long 
term to improved knowledge based systems in biomedicine. 

2 - Highlights of Progress 

In the last year, research has progressed on several fundamental issues of Al. As in 
the past, our research methodology is experimental; we believe it is most fruitful at 
this stage of Al research to raise questions, examine issues, and test hypotheses in 
the context of specific problems, such as management of patients with Hodgkin’s 
disease. Thus, within the KSL we build systems that implement our ideas for 
answering (or shedding some light on) fundamental questions; we experiment with 
those systems to determine the strengths and limits of the ideas; we redesign and 
test more; we attempt to generalize the ideas from the domain of implementation to 
other domains; and we publish details of the experiments. Many of these specific 
problem domains are medical or biological. In this way we believe the KSL has 
made substantial contributions to core research problems of interest not just to the 
AIM community but to Al in general. 

Progress is reported below under each of the major topics of our work. Citations 
are to KSL technical reports listed in the publications section. 

27 E. H. Shortliffe 



Details of Technical Progress 5P41 -RR00785 15 

2.1 - Know/edge Representation 

How can the knowledge necessary for complex problem solving be represented for 
its most effective use in automatic inference processes? Often, the knowledge 
obtained from experts is heuristic knowledge, gained from many years of experience. 
How can this knowledge, with its inherent vagueness and uncertainty, be represented 
and applied? 

Work continues in PROTEAN and BBl, with its explicit representation of control 
knowledge (see the summary of Blackboard Architectures below). In particular, we 
have advanced our methods for representation of geometric problem solving 
knowledge in PROTEAN and PEAKS (see PROTEAN section of this report.) We have 
developed an application in a new domain of diagnosis and correction of errors in a 
linear accelerator beam line, the ABLE project. In this we have explored issues of 
representation of diagnosis expertise, and have developed a method that 
incorporates a numerical simulator of a model system with an expert system (see 
discussion under Knowledge Acquisition and Learning below.) In addition, we 
continued research on NEOMYCIN which has a component for using a flexible, rich 
representation of control knowledge to facilitate modeling of problem solving at the 
strategic level as well as at the tactical level. 

[See KSL technical reports KSL-87-58 and KSL-87-62.1 

2.2 - Blackboard Architectures and Control 

How can we design flexibie control structures for powerful problem solving 
programs? How can we use these structures effectively in many problem domains? 
How can we represent processes and reason about their behavior, and perform 
intelligent actions under real-time requirements? 

We have continued to develop the BBl blackboard architecture for systems that 
reason about -- control, explain, and learn about -- their own actions. In the last 
year, we have significantly extended the system-building support and run-time 
capabilities of the BBI system. These extensions include (a) declarative 
representation of large bodies of factual and heuristic knowledge; (b) integration of 
multiple reasoning skills in a single system; (c) dynamic control under real-time 
constraints. We have also implemented the following application-independent 
components: (a) declarative representation for device structure, function, faults, and 
repairs; (b) reasoning modules for associative and model-based diagnosis: and (c) an 
asynchronous communications interface. 

During the past year, we began work on an advisory system, called BB-ICU (see 
also the separate collaborative project report on Page 129) to support patient 
monitoring in a surgical intensive-care unit (SICU). Briefly, intensive care patients 
are critically ill individuals who require life-support devices, such as respirators or 
dialysis machines, to perform some of their vital functions. During their stay in the 
intensive care unit, patients are monitored closely and gradually weaned from life- 
support devices in coordination with their changing physiological status and other 
therapeutic interventions. 

We began by visiting the SICU at the Palo Alto VAMC to observe monitoring 
procedures and operations. We worked with Dr. Adam Seiver to enumerate and 
characterize component intensive-care monitoring tasks and to delineate the space 
of relevant knowledge. We developed an ontology and representation scheme for 
important categories of knowledge (e.g., anatomy, physiology, pathology, therapy) 
and assessed our approach by implementing a small amount of knowledge in each 
category. We then enumerated key architectural requirements for BB-ICU and 
identified those not met in existing Al architectures. 

E. H. Shortliffe 28 



5P41 -RR00785-15 Details of Technical Progress 

During the fall of 1987, we elaborated our initial ideas in the context of more 
focused design and implementation activities. Exploiting and extending our BBl 
architecture [KSL-84-16, KSL-88-221, we developed: (a) an asynchronous I/O 
subsystem to provide integrated and asynchronous perception, action, and cognition; 
(b) an intelligent I/O mediator to translate, interpret, and filter low-level data on 
behalf of the application system; and (c) an I/O manager to coordinate the 
mediator’s activities with an application system’s dynamic attentional focus. Working 
within our BB* knowledge representation environment [KSL 86-381, we implemented 
representations of the anatomy, physiology, and pathology of the respiratory system 
as instances of corresponding elements of a generic flow system. We developed 
reasoning components for continuous data interpretation and associative diagnosis of 
observed symptoms. We also developed reasoning components that instantiate 
generic models, such as the flow system model, to explain the causal relations 
underlying associative diagnoses or to hypothesize plausible diagnoses in the 
absence of associative knowledge. We demonstrated the application of the 
reasoning components and respiratory knowledge to interpret, diagnose, and explain 
respiratory data of the sort continuously monitored in the intensive-care unit. BB-ICU 
Demo-l comprises independently implemented versions of each of these system 
components. BB-ICU Demo-2, which we completed in April, integrates these system 
components. 

Some of this work is reported in recent technical reports [KSL 87-31, KSL 87-67, 
KSL 88-20, KSL 88-22). Other reports are in preparation. In addition, we have 
given talks describing this work at: .the Carnegie-Mellon University Symposium on 
Architectures for intelligence, Boeing Computer Services in Seattle, Wa., Advanced 
Decision Systems in Mountain View, Ca., 
Austin, TX. 

and the DARPA Planning Workshop in 

2.3 - Advanced Architectures 

Many applications, such as process planning and control, maintenance, 
troubleshooting, environmental control, and crisis management require knowledge- 
based systems that can cope with large amounts of data and that produce responses 
in real-time. The current hardware and software architectures for knowledge-based 
systems cannot support such requirements. The most promising approach for 
achieving orders of magnitude improvement in the quantitative performance of 
knowledge-based systems is by exploiting concurrency on multiprocessor systems. 
Based on near-term projections for integrated circuit technologies, it is clear that 
highly parallel multiprocessor computers consisting of 100’s to 1000’s of processors 
and realizing a variety of concurrent architectures can be built. The major issue is 
whether such computers can be effectively used to enhance the performance of 
knowledge-based systems. Since 1985, the Knowledge Systems Laboratory at 
Stanford University has been investigating this issue. 

The goals and technical approach of this project, largely supported by DARPA under 
the Strategic Computing Program, have been discussed in previous annual reports. 
To summarize briefly, we seek to achieve two to three orders of magnitude speedup 
in the execution of knowledge-based systems, by identifying and exploiting sources 
of concurrency at all levels of system design: the application level, the problem 
solving framework level, the programming language level and the hardware systems 
architecture level. Due to the inherent complexity of the task and the lack of 
theoretical foundations for parallel computation with ill-structured problems, we have 
taken an empirical approach. During the first phase of the project, which was 
concluded in July 1987, we made specific choices at each of the system levels, i.e. 
taken a “vertical slice” through the design space, and have conducted several 
experiments to investigate the effects of a wide variety of parameters on 
performance. 

29 E. H. Shortliffe 



Details of Technical Progress 5P41 -RR00785- 15 

Our research methodology is: 

. Select specific knowledge-based system applications, primarily signal 
understanding applications. 

. Encode these applications following various proposed concurrent 
software models. 

. Evaluate the qualitative and quantitative performance of the applications 
running on simulated multiprocessor machines with respect to varying 
hardware parameters, for example, number of processors and 
communication protocols, and varying software organizations, for 
example, degree of control centralization. 

In the following discussion, we present the major components of our project, and for 
each component we describe its current status. 

2.3.1 - SIMPLE/CARE Multiprocessor Simulation System 

Simulation of systems at an architectural level can offer an effective way to study 
critical design choices if (1) the performance of the simulator is adequate to examine 
designs executing significant code bodies -- not just toy problems or small 
application fragments, (2) the details of the simulation include the critical details of 
the design, (3) the view of the design presented by the simulator instrumentation 
leads to useful insights on potential problems with the design, and (4) there is 
enough flexibility in the simulation system so that the asking of unplanned questions 
is not suppressed by the weight of the mechanics involved in making changes either 
in the design or its measurement. 

SIMPLE/CARE is a simulation system which satisfies these requirements. It forms 
the foundation for our empirical investigations of software architectures and hardware 
system architectures for concurrent knowledge-based systems. SIMPLE is a CAD 
(Computer Aided Design) system for hierarchical, multiple level specification of 
computer architectures and includes an associated mixed-mode, event-based 
simulator. CARE is a parameterized, multiprocessor array emulation specified in 
SIMPLE’s specification languages and running on SIMPLE’s simulator. Our simulation 
system is in use by several research groups at Stanford, and it has been ported to 
several external sites including NASA Ames Research Center. A tutorial was held in 
January, attended by representatives from the DOD, NASA and Boeing, which 
described the CARE/SIMPLE system, as well as the LAMINA programming interface 
(see below). The attendees received instruction in use of the system for making 
measurements of the performance of various simulated multiprocessor applications. 

The SIMPLE/CARE system is currently implemented in ZetaLisp and executes on 
Texas Instrument Explorer and Symbolics 3600-class Lisp workstations. We have 
recently started a reimplementation of the system in Common Lisp. One of our 
proposed objectives during the coming year is to complete this reimplementation. A 
Common Lisp version of SIMPLE/CARE will make it portable to a wide variety of 
computer systems including Sun and MicroVAX workstations. This development will 
necessarily be an ongoing task as Common Lisp standards, in particular, window 
standards, evolve and as the inevitable commercial reinterpretations of standards 
emerge. 

The SIMPLE design specification system has design operators for automatically 
generating array type multiprocessor architectures from a “unit cell” specification. 
There is considerable interest, both at Stanford and elsewhere, in using the system 

E. H. Shortliffe 30 



5P41 -RR007851 5 Details of Technical Progress 

to specify and simulate other types of multiprocessor architectures. A second 
proposed objective is to augment SIMPLE’s design operators with recursive 
operators for the generation of architectures using, for example, hierarchical busses 
or recursive interconnection nets such as Omega nets. 

2.3.2 - LAMINA Programming Interface 

LAMINA provides extensions to Lisp for studying expressed concurrency in functional 
programming, object oriented, and shared variable models of concurrent computation. 
The implementation of the support for all three computational models is based on the 
common notion of a stream, a data type which can be used to express pipelined 
operations by representing the promise of a (potentially infinite) sequence of values. 
LAMINA also provides system support for the management of software pipelines and 
dynamic structure creation, relocation, and reclamation in a multiprocessor, multi- 
address-space system. 

Algorithms and applications written in LAMINA may be run on the SIMPLE/CARE 
simulation system in order to study their execution on alternative multiprocessor 
architectures. 

The development of LAMINA was essentially completed during the past year, and the 
software is now reasonable stable. In order to make LAMINA available in the 
community, we intend to port it to Common Lisp. We also expect that the 
application research will motivate various extensions to the LAMINA programming 
interface. 

2.3.3 - Poligon Problem Solving Framework 

Poligon [KSL 86-19, KSL 88-041 is a framework for the development of Blackboard- 
like applications on a (simulated) multiprocessor. It consists of: 

. A compiler, which compiles a high-level description of the Blackboard’s 
structure and the Knowledge to be applied by the system, to run on a 
distributed memory multiprocessor. 

. A run-time system which provides a debugging and testing environment 
for Poligon programs as well as run-time support. 

Both the compiler and the run-time system are thoroughly integrated with the 
program development environment of TI Lisp machines, the machine on which the 
execution of Poligon programs are simulated. 

Serial Blackboard Systems are implemented with the Nodes being represented as 
records on the Blackboard. The Knowledge is encoded in Knowledge Sources. 
These are typically compiled into procedures which are invoked by the Blackboard 
System’s kernel. There is some form of scheduler for the Knowledge, which invokes 
one Knowledge Source after another. The Blackboard and the Knowledge Base both 
share the same address space, though they are functionally distinct. Knowledge 
Sources are “invoked” (executed) as a result of changes in the Blackboard placing 
that change event in a queue used by the scheduler. The scheduler repeatedly 
picks a Knowledge Source which is interested in the type of event at the end of the 
queue. 

Experiments with Poligon are by no means complete, but we have learned a number 
of lessons thus far. Some of these lessons are enumerated below. 

31 E. H. Shortliffe 



Details of Technical Progress 5P41 -RR00785- 15 

. it is very hard to write any program which implements either a 
framework, such as Poligon or an application such as those which have 
been mounted on Poligon. This is due largely to asynchronous side 
effects. A system with better formal properties would be less error 
prone in this respect but might well make much less efficient use of the 
hardware. These difficulties could also be caused by an insufficiency of 
mechanisms to control coherency in Poligon. 

. In order to produce a reliable program it is necessary to write code 
which makes no assumptions about anything that any other part of the 
system might be doing. Failure to do so results in brittle systems. 

. In order to achieve a coherent solution it was found to be necessary to 
develop a number of programming methodologies. For example, the 
creation of blackboard Nodes is tricky. Because each element is likely 
to represent some real-world object, it is important either to provide a 
mechanism for resolving the conflict caused by multiple asynchronous 
requests to create an element that represents the same thing or to 
provide a mechanism for managing the creation of Nodes. Poligon opts 
for the latter approach. 

2.3.4 - CAGE Problem Solving Framework 

CAGE [KSL 86-41, KSL 88-021 is a framework for building and executing 
applications as a cor.current blackboard system. CAGE is based on the AGE [KSL 
80-291 serial blackboard framework. It includes mechanisms for the concurrent 
execution of knowledge sources, rules and parts of rules. The CAGE user has 
complete control over which of these mechanisms are used. CAGE is designed to 
execute on a shared-memory, multiprocessor system with tens to hundreds of 
processors. It is implemented using Qlisp, a concurrent dialect of Lisp designed for 
multiprocessors with a single, shared address space. CAGE currently executes on a 
shared-memory variant of CARE simulated using the SIMPLE simulation system. 

We are nearing completion of a series of end-to-end experiments for evaluating the 
utility and performance of the CAGE concurrent blackboard framework. During the 
coming year we intend to complete these experiments and disseminate the results. 

2.3.5 - CAGE, Poligon and LAMINA Comparative Experiments 

During the past two years we have been developing application software and 
machine architecture models to supp.ort a series of end-to-end experiments 
comparing various concurrent programming systems for knowledge-based 
applications. The goals of these experiments are to: 

. Obtain quantitative comparisons of the performance of the programming 
systems. 

. Gain insights into how different concurrent programming models lead to 
different (or similar) application decomposition and organization. 

. Force the refinement of the concurrent programming systems so as to 
better support application development. 

. Gain insights into the ease or difficulty of writing application code in 
each of the programming systems. 

E. H. Shortliffe 32 



5P41 -RR00785- 15 Details of Technical Progress 

The common application for these experiments is Elint [KSL SS-691, a real-time, 
knowledge-based system for integrating pre-processed, passively acquired radar 
emissions from aircraft. This Elint application has been implemented in three 
different concurrent programming systems: LAMINA, Poligon and CAGE. 

Each of the implemented applications are executed and evaluated using various input 
data sets and varying numbers of processors. 

Application code written in either LAMINA or Poligon compiles to code which 
executes on the CARE architecture. CAGE, however, is targeted toward a single 
address space, shared variable multiprocessor architecture. CAGE is implemented in 
QLisp, a concurrent Lisp for shared variable multiprocessors. To support CAGE we 
had to develop a multiprocessor “blackboard machine” variant of CARE. This 
blackboard machine models a shared variable architecture and includes the 
mechanisms and instruments necessary to manage and study memory contention. 
The architecture implements the blackboard and the control data structures in global, 
shared memory. It directly supports the CAGE system and application code written 
in QLisp. 

During the past year we have: 

. Completed the implementation of the the Elint application in each of the 
three concurrent programming systems. 

. Completed the development of the blackboard machine variant of CARE. 

. Developed an experiment plan fdr the comparative studies. 

. Developed a new measure of speedup as a function of the number of 
processors in a multiprocessor system. This measure is useful for 
evaluating system performance of real time applications and is based on 
the concept of maximum sustainable input data rate. 

. Completed the first set of experiments for each of the three 
programming systems. 

2.3.6 - The AIRTRAC Application 

AIRTRAC [KSL 86-201 is the primary application driving our development of 
concurrent knowledge-based system programming methodologies. Also, it is one of 
the basic applications used for our multiprocessor architecture performance 
experiments. AIRTRAC is a knowledge-based signal interpretation and information 
fusion system. The system attempts. to identify, track, and predict the future 
behavior of aircraft. In particular, it attempts to recognize aircraft which might be 
engaged in covert activity, for example, smuggling. The inputs to AIRTRAC are 
periodic radar tracking system reports, a priori, filed flight plans for some aircraft, 
and occasional intelligence reports about suspected covert activity. 

AIRTRAC is designed to be sufficiently complex and realistic to adequately test 
various ideas about concurrent problem solving on multiprocessor machine 
architectures. The AIRTRAC application involves continuous input data streams, 
typical of real-time signal interpretation problems. Such problems often require a 
level of computational power two to three orders of magnitude beyond what is 
currently available. Moreover, the application uses data-driven, expectation-driven 
and model-driven styles of reasoning. These reasoning styles encompass a wide 
range of paradigms in artificial intelligence. 

33 E. H. Shortliffe 



Details of Technical Progress 5P41 -RR00785- 15 

The AIRTRAC Data Association Module and associated experiments were completed 
as of summer, 1987 [KSL 87-34-j. The experiments were performed using the 
SIMPLE/CARE multiprocessor simulation system. They demonstrated that almost 
linear speedup as a function of the number of processors can be achieved (at least 
up to 100 processors) for a periodic data-driven knowledge-based system such as 
the Data Association Module. 

During the past year, the design and knowledge acquisition for the Path Association 
Module was completed. Over one half of the LAMINA code for this module has been 
implemented and debugged. 

The completed AIRTRAC application will provide an end-to-end example of a 
concurrent, knowledge-based signal interpretation system. It will demonstrate the 
benefits and costs of implementing and executing such systems on multiprocessor 
architectures. Also, the application is sufficiently complex that it will serve as 
important test case for evaluating multiprocessor architectures for knowledge-based 
systems and “tuning” the engineering parameters for such systems. 

2.4 - Knowledge Acquisition and Machine Learning 

Our research in machine learning has focused on several distinct problem domains 
including medical (NEOMYClN/HERACLES), physics (ABLE), and biochemical 
(PROTEAN) in addition to domain-independent investigations. We also are motivated 
by the need for effective tools for knowledge- acquisition and maintenance of 
knowledge bases (IMPULSE and STROBE for FRM, BBEDIT, KSEDIT with BBl). 

2.4.1 - Learning by Chunking 

Chunking is a learning mechanism that acquires rules from goal-based experience. 
SOAR is a general problem-solving architecture with a rule-based memory that can 
use the learning capabilities of chunking for the acquisition and use of macro- 
operators. Rosenbloom et al. are investigating chunking in SOAR and find that 
chunking obtains extra scope and generality from its intimate connection with the 
sophisticated problem solver (SOAR) and the memory organization of the production 
system. Another emphasis in SOAR is Explanation-Based Learning, a powerful 
technique that generalizes concepts learned from examples. In this past year, SOAR 
has demonstrated acquisition of diagnostic problem solving knowledge (similar to that 
in NEOMYCIN), learning from multiple examples and from analogy, and learning 
attribute-value information to acquire features of a single object incrementally, 
reusing known objects as values of attributes. The work on SOAR is continuing 
under Dr. Paul Rosenbloom at ISI in Los Angeles. 

2.4.2 - Inductive Rule Learning 

In previous reports, we discussed the work of Buchanan, et al. on incremental 
learning process from examples with the rule-learning system RL (described in the 
1986 SUMEX report). This work has continued, and has been applied to the domain 
of linear accelerator physics (see below). Results from the RL research indicate that 
intelligent selection of instances based upon knowledge of the state of the evolving 
theory results in a faster convergence of an evolving theory toward the target 
concept, requiring many fewer cases for learning. 

In the paper Simulation-Assisted Inductive Learning, to be presented at the 1988 
AAAI conference in Minnesota, Buchanan, Clearwater, et al. describe the work done 
as a collaborative effort between the Rule Learner project and the Automated Beam 

E. H. Shortliffe 34 



5P41 -RR00785-15 Details of Technical Progress 

Line Experiment project. The focus of this work is to show how RL can be used in 
a real-world domain with sparse data by working with a simulator which numerically 
models the domain. The domain is the classification and location of faults in a 
particle accelerator. This study demonstrates the effectiveness of RL even in this 
noisy, numerical domain. Some problems in generating the best examples from 
which to learn rules and how to learn the best rules from a given set of examples 
are explored. In addition, methods of weighing the evidence when several rules fire 
are being investigated. 

2.4.3 - Learning Apprentice 

In addition, we continued several investigations of methods for bui!ding knowledge 
bases for knowledge-based programs. Knowledge engineering remains the 
“standard” method of building a knowledge base for commercial systems, so we 
have investigated ways of making that more efficient. Technical reports KSL 87-58 
and KSL 87-62 describe some of the results, pertaining mostly to the principles of 
starting with a sound problem solving strategy and of exploratory programming. 
Reports KSL 87-60 and KSL 87-67 describe work on learning apprentice methods. 

In last year’s SUMEX report, we reported results on the ODYSSEUS apprenticeship 
learning program, described by Wilkins in KSL 86-63, which is designed to refine 
and debug knowledge bases for the HERACLES expert system shell. ODYSSEUS 
analyzes the behavior of a human specialist using two underlying domain theories, a 
strategy theory for the problem solving method (heuristic classification), and an 
inductive theory based on past problem solving sessions. ODYSSEUS improves the 
knowledge base for the expert system shell, identifying bugs in the system’s 
knowledge in the process of following the line-of-reasoning of an expert, serving as 
a knowledge acquisition subsystem. The system can also be used as part of an 
intelligent tutor, identifying problems in a novice’s understanding and serving as 
student modeler for tutoring systems. 

Wilkins, et al. illustrate that an explicit representation of the problem solving method 
and underlying theories of the problem domain provide a powerful basis for 
automating learning for expert system shells [KSL 86-621. In the last year we 
began the creation of a case library from medical records for the NEOMYCIN domain. 
This library is essential for apprenticeship learning in ODYSSEUS in three ways. 
First, experiments have shown that the existing knowledge bases are too 
impoverished to follow the reasoning of an expert, and a case library will allow an 
induction system to automatically expand the domain knowledge to overcome this 
limitation. Second, when the learning system fails to explain an action of a student 
or expert correctly, the critic component of the system generates thousands of 
conjectures. To filter these requires a case library. Finally, the case library will 
allow us to demonstrate that apprenticeship learning can improve the performance of 
an expert system. 

2.5 - Pragmatic Approaches to Reasoning Under Uncertainty 

The goal of this project is to investigate pragmatic approaches to computer-based 
probabilistic reasoning systems. In the past, artificial intelligence researchers have 
often avoided probability theory for reasoning with uncertainty because of the 
perception that the application of probability is invariably associated with a 
commitment to intractable algorithms and an inordinate amount of knowledge 
acquisition time. The development of efficient probability inference and assessment 
techniques will allow investigators to apply a theoretically justified theory of belief 
entailment to complex problems. Specifically, this project seeks to (1) develop 

35 E. H. Shortliffe 



Details of Technical Progress 5P41 -RR00785-15 

techniques for using knowledge about problem-solving tradeoffs to dynamicaliy 
optimize the value of computer performance to the user, (2) construct efficient 
algorithms for probabilistic reasoning, and (3) investigate pragmatic techniques fat 
the elicitation of knowledge from experts. 

2.5.1 - Reasoning about inference tradeoffs 

Research on reasoning tradeoffs has focused on the time vs. quality-of-result 
tradeoff in several domains, Additionally, tradeoffs arising with the representation of 
knowledge and explanation of inference within a probabilistic framework have been 
identified [KSL 88-131 The growing perspective of this research is that problems 
traditionally ascribed to knowledge representation, inference, and explanation in 
probability-based reasoning systems have been encountered because of insufficient 
attention given to tradeoffs under bounded or varying resources available for 
engineering, computation, or cognition [KSL 88-13,87-281. 

Notable research on inference tradeoffs during this past year has been the 
implementation of a prototype strategic reasoner for the analysis of tradeoffs. 
Fundamental issues of control under varying resource limitations were explored with 
simple sorting algorithms [KSL 88-31. Some of this work will be reported in an 
article appearing in the AAAI conference this summer. Other work on inference 
tradeoffs has focused on applying a similar computational architecture to control the 
selection of alternative belief-network inference strategies [KSL 87-641. 

Work has been carried out on the implementation and characterization of useful 
classes of probabilistic approximation algorithms that contain explicit tradeoffs. There 
has been special interest in the development of flexible strategies for reasoning 
under uncertainty with varying resource limitations. Recent work along these lines 
has focused on the development of modified versions of a probabilistic inference 
technique developed by Pearl [KSL 88-271. The new approach allows the 
performance of the algorithm to be “gracefully degraded” under resource limitations, 
through pruning the consideration of terms in accordance with their expected effect 
on the final answer. Preliminary empirical analysis of the time/accuracy tradeoff for 
this algorithm has been carried out on a multiply-connected belief network. 

25.2 - Efficient probabilistic inference algorithms 

During the past year, two of our primary goals have been to implement several 
known probabilistic inference algorithms and begin to test their efficiency. In 
particular, we have implemented Pearl’s algorithm for multiply-connected belief 
networks and in the process we have gained important insights into the nature of the 
algorithm [KSL 88-271. These insights have allowed us to make design choices that 
yield an efficient implementation the algorithm. In particular, we have designed and 
developed a fast method for finding and using a cutset of nodes for inference in 
networks that contain complex loops. We also are working to improve the efficiency 
of updating belief networks that do not contain loops; our current algorithm is able to 
update a singly-connected network of propositional variables at a rate of 
approximately 50 nodes per second on a Macintosh II In Turbo Pascal. 

Our implementation of the Pearl algorithm has been successfully tested using a set 
of benchmarks of varying complexity that we have developed. These benchmarks 
soon will be used to test comparatively the computational time complexity of several 
additional inference algorithms. We also have begun a collaboration with a 
researchers at the University of Aalborg in Denmark who are leading an effort in 
Europe to develop expert systems based on belief networks. We have already 

E. H. Shortliffe 



5P41 -RR00785-15 Details of Technical Progress 

shared some of our benchmarks with them. In the coming months we anticipate 
increased collaboration that will include comparison of benchmark timing results and 
the exchange of algorithms. 

The Pearl algorithm that we have implemented will serve as one type of exact 
algorithm. In addition, we are currently implementing a probabilistic inference 
algorithm by Lauritzen and Spiegelhalter. The Pearl and LauritzenISpiegelhalter 
algorithms will be our initial set of exact algorithms. We also plan to study 
approximation and heuristic techniques for probabilistic inference. This is particularly 
important in light of our proof that exact probabilistic inference using belief networks 
is NP-hard [KSL 87-271. We previously implemented a stochastic algorithm and will 
use this as our initial approximation algorithm. An neural-network algorithm will be 
used as an initial heuristic algorithm. We anticipate that by the end of the summer 
we can begin to compare these algorithms on sets of theoretical and real inference 
problems. These tests will provide important information for designing new algorithms 
in the coming year. 

Several other researchers in the Medical Computer Science Group are currently 
using our inference algorithms to develop expert systems based on belief networks. 
Systems that presently are being developed include 1) an intelligent anesthesia 
monitor, 2) a diagnostic system for the Intensive Care Unit, and 3) a system that 
assists in evaluating the statistical validity of a clinical drug trial report. These 
applications have given us practical feedback about the level of inference 
performance that is necessary in real domains. Although these applications are still 
in the early stages of development, they suggest that improved inference efficiency 
will be a critical issue in producing practical expert systems that are based on belief 
networks. 

During the past year we have developed a general knowledge engineering 
environment called KNET (Knowledge NETwork) on a Macintosh II in MPW Pascal 
[see Chavez article]. KNET is a flexible graphical interface system for entering a 
belief network [see Lehmann article] and running cases using a belief network. It 
provides a general software system foundation from which to experiment with 
different methods for pragmatic probabilistic reasoning. For example, a key feature 
is that KNET provides a modular environment in which different inference techniques 
can be tested. We recently were able quickly to install Pearl’s inference algorithm 
into KNET. We soon plan to have several other inference algorithms running in 
KNET. 

Although the emphasis in the early stages of this work has been on developing an 
initial set of algorithms, we have also designed several new techniques. One 
technique uses dynamic programming to solve efficiently a large class of complex 
probabilistic inference problems. We have not yet implemented and tested this 
algorithm. However, it appears that for some types of complex belief network 
topologies this algorithm will be very fast relative to current techniques. Another 
method that was recently developed in our group allows any belief network algorithm 
to be used to solve decision problems (Le., influence diagram problems) [KSL 
88-281. This general method significantly broadens the scope of application of our 
work on belief network algorithms. Of particular interest, it allows currently available 
exact, approximation, and heuristic belief network algorithms to be easily adapted to 
solve decision making problems. 

37 E. H. Shortliffe 



Details of Technical Progress 5P41 -RR007851 5 

2.5.3 - Probability assessment 

During the past year, the majority of the research outlined for the reasoning-by-two 
assessment method, now called similarity networks, was completed. We began by 
implementing the similarity network approach in Turbo Pascal on the Macintosh II. 
We then evaluated the knowledge assessment tool by using the program to build a 
small component of the Pathfinder knowledge base, a module that helps a novice 
pathologist classify spherical structures seen in a lymph-node tissue section. Using 
the program, our expert was quickly able to identify the morphologic features 
relevant to the classification task and was able to specify the dependencies among 
these features. 

Upon using the program for probability assessment, it became clear that a 
generalization of the similarity network would be useful for reducing the number of 
assessments required. In particular, it became clear that arbitrary sets of hypotheses 
should be allowed to be clustered together and labeled as “similar.” A pen and 
pencil approach to eliciting probabilities in this manner was developed and used to 
assess the probabilities required for the entire lymph-node pathology domain. In 
assessing the probabilities, it was assumed that all observations are conditionally 
independent on each hypothesis. The approach was quite successful as it reduced 
the number of probability assessments required of the expert by a factor of 
approximately twenty (from 30,000 assessments to roughly 1,500). 

Finally, the performance of the knowledge base constructed in this manner was 
evaluated [KSL 88-381. In doing so, a new evaluation metric based in decision- 
theory was developed. The results of the evaluation demonstrated that the 
performance of the knowledge base was close to that of the expert. However, the 
results also showed that there is still room for improving the knowledge base 
through the representation of dependencies among features. 

2.5.4 - Collaborations 

During the past year we have continued to maintain contact with a number of 
Stanford faculty who are interested in the research goals of this grant. We have 
also collaborated with visitors from outside of Stanford. In particular, Prof. Max 
Henrion visited our group during the Autumn quarter. We continue to communicate 
frequently with him about our common research interests. We also have benefited 
from visits by Dr. David Spiegelhalter (a statistician from the Medical Research 
Council in England), Dr. Stig Andersen (a computer scientist from Aalborg University 
in Denmark), and Prof. Ross Shachter (a Stanford faculty member on sabbatical at 
Duke University). 

Most of the members of our group were able to attend the recent conference on 
Influence Diagrams in Berkeley. We have submitted several papers to the AAAI 
Uncertainty Workshop this year and most of us plan to attend this workshop in 
August. 

E. H. Shortliffe 38 



5P41 -RR00785- 15 Details of Technical Progress 

lll.A.2.4. Core System Development 

1 - Introduction 

In this section we describe progress on our core system development and work 
toward a distributed AIM community. In last year’s report, we discussed the 
motivations and plans for our core system development work along four dimensions: 
1) the motivation for the shift of the SUMEX-AIM community from a central 
mainframe-based computing resource model to a largely distributed workstation- 
based model; 2) the prospects for workstation technology and vendor support for a 
diverse distributed AIM community; 3) the projected core SUMEX-AIM systems tasks 
needed to complement vendor developments to realize distributed community 
operation: and 4) the integration, dissemination, and management of the shift of the 
AIM community from a centralized to a more distributed operation, including the 
remaining central resource functions. These were expanded still further at a site 
visit held in August 1987 in response to our request to the National Advisory 
Research Resources Council to restore the final 2 years of our grant award. 
Following a special study section review and reconsideration by the Council, our 
plan and the full 5-year grant award were approved. The review group’s concluding 
recommendations included the following guideiines: 

“Consistent with its charter as a national resource, SUMEX should focus its 
systems activities on producing a distributed medical research environment 
that can be easily reproduced at other sites. It should also continue to play 
the important role it plays today as a repository of systems information and 
expertise for the medical Al research community, as well as the larger 
computer science community. However, it should avoid trying to be all things 
to all people and should focus its attention on a small number of standardized 
hardware and software configurations. A strong effort should be made to 
acquire information about related systems activities at other sites and to avoid 
duplication of effort. These guidelines should be used to establish priorities 
among the proposed set of system activities and to apply effort 
appropriately.” 

The review committee’s recommendation was very much in line with our own goals 
to more sharply focus our development resources and much of our effort over the 
past year has been devoted to that end. Since our 1980 renewal proposal in which 
our move to distributed workstation technologies began, we had taken on the 
development and support of a wide array of systems including mainframes (DEC 
2060 and 2020) network servers (2 DEC VAX 1 l/750 UNIX file servers, a SUN 
31180 UNIX file server, a Xerox file server, 7 network laser printers, Ethernet 
gateways and TIP’s, and ARPANET and TELENET wide-area access systems), and 
workstations (50 Xerox D-machines, 20 TI Explorers, 6 Symbolics machines, 5 
Hewlett-Packard 9836 workstations, and 3 SUN 3175 workstations). Whereas we 
cannot drop support for these systems irresponsibly, we resolved to pick a much 
more limited environment on which to focus our long-term systems development 
efforts and to phase out support for the other systems as quickly as possible. 

In summary, we have chosen Apple Macintosh II workstations as the general 
computing environment for researchers and staff, TI Explorer Lisp machines (including 
the microExplorer Macintosh coprocessor) as the near-term high-performance Lisp 
research environment, and a SUN-4 as the central system network server (wide- and 
local-area network interfaces, file services, printing services, etc.). 

39 E. H. Shortliffe 



Details of Technical Progress 5P41 -RR00785-15 

2 - Distributed System Evaluation and Selection 

2.7 - Design Goals 

In planning for AIM community computing needs for the next few years to replace 
and upgrade the powerful and easy-to-use general computing tools and network 
services of the 2060, several goals were identified: 

. The work environment should be modern and combine graphics, pointing, and 
traditional keyboard modalities of interaction, as it is expected to be the 
primary work environment for some years to come. 

. The system should support the most powerful Al research and Lisp 
development environment available today, possibly involving special-purpose 
hardware. 

. The system should support small-to-medium-size Al and Lisp-based research 
work without requiring special hardware. 

. The cost per person should be low enough as to permit putting a machine on 
or near every desk and to consider the system as a potential Al delivery 
environment. 

. The system should integrate well into a heterogeneous computing 
environment typical of AIM research work. 

. The system should be capable of editing, organizing, and printing large 
documents, such as theses and books. 

. The system should be capable of generating and editing state-of the art 
graphics. 

. The design should be incrementally extendable and augmentable as new 
hardware and software technologies appear and as the number of users 
fluctuates. 

. The design should be simple enough as to refocus our systems work on a 
smaller number of machines and cost-effective enough as to be replicable at 
smaller AIM sites that wish to benefit from our experience. 

. The design should permit easy data sharing and exchange with collaborators 
at other sites and within Stanford University. 

In addition to user-related computing tools, other heavily-used network services 
traditionally provided by the shared 2060, must be replaced. These include wide- 
area network access (ARPANET and TELENET), electronic mail (transmission/routing, 
reception, and user access), community bboards, file service, and print spooling. 

2.2 - Evaluation Results 

We examined many potential configurations before deciding on the solution involving 
Mac II’s, microExplorer’s, and the SUN-4 . Many of the considerations were 
technical in terms of the tools and services provided by the systems and many had 
to do with user preferences for interface style and environment. 

Timesharing machines were eliminated for their lack of modern interactive 
productivity tools. (The many reasons for the trend from timesharing to workstations 

E. H. Shortliffe 40 



5P41 -RR00785- 15 Details of Technical Progress 

have been discussed in previous annual reports. The pressures behind this trend 
have grown stronger with time.) 

Xerox lisp machines were eliminated by virtue of their uniqueness and the 
questionable future of the hardware product line. Stand-alone TI (and other similar) 
Lisp machines were eliminated by virtue of their uniqueness and high cost and lack 
of general computing tools for mail, document preparation, etc. 

Sun workstations were eliminated by virtue of their relatively higher cost and 
engineering orientation and their dependence on the UNIX user interface which 
received almost uniformly negative comment in a KSL user questionnaire about 
computing environment preferences. 

IBM PC’s were eliminated because of current limitations in their primitive operating 
system, window system, and interface style, when compared with the Macintosh. 

Of course, this kind of evaluation is very complex and the above reflects only a 
summary of key issues. There are many reasons for or against any of the above 
machines not fully enumerated here. In the end, we chose the Apple Macintosh II 
primarily because of the following considerations: 

. the Mac has a powerful, intuitive, and consistently applied icon-based user 
interface that facilitates wide use and effectiveness. 

l The Mac II is a powerful machine (Motorola 68020-based) with an open 
architecture that provides long-term configuration flexibility (e.g., for color, 
coprocessing units like the microExplorer, memory, i/o devices, etc.). 

. The Macintosh is popular and is used by a growing number of our 
collaborators. Many members of the AIM community specifically endorsed the 
Macintosh as their machine of choice and many already have Macintoshes at 
home. 

. Apple gives educational institutions a substantial discount. This and the low 
price of third-party disks meant we could put a Mac on almost every desk. 

. There is a large variety of third-party hardware and software available. 
Competition and volume mean lower prices; especially when compared to Sun 
or DEC third-party offerings. 

. Texas Instruments announced the microExplorer, a board-level product which 
gives the user a custom VLSI lisp machine inside his Mac, for a fraction of 
the cost of Tl’s stand-alone Explorer workstation product. 

To replace the network service functions of the SUMEX-AIM 2060, we chose a Sun 
41280 system. We investigated competitive systems, for example, the DEC VAX and 
Pyramid Technology 9000 series product line. Configurations are available from 3.5 
to 25 MIPS and with individual I/O channel speeds up to 11 MBytes/Set. However, 
we decided that the SUN-4 was more cost effective, had more popularity at Stanford 
and at other universities, and offered outstanding research network service software. 
This configuration is at the beginning of its product cycle and can be expected to 
serve for many years to come. 

The SUN 41280 approach was made even more attractive by the opportunity to have 
it equipped with state-of-the-art 900 megabyte disks. This option was presented to 
us after a review of second-source disks indicated that SUN’s then offered Fujitsu 
Double Eagle units (575 megabytes) were not the optimum in cost-effectiveness. 

41 E. H. Shortliffe 



Details of Technical Progress 5P41 -RR00785- 15 

2.3 - Configuration 

The working plan we eventually settled on called for a Sun 4/280, 69 Macintosh II 
workstations, 10 TI microExplorer upgrades, 7 Kinetics FastPath gateways, and a 
combination of upgrade packages yielding 2 20 page/minute PostScript laser 
printers. 

The Sun 4/280 is configured with 32 megabytes of memory and 1.8 gigabytes of 
disk space. By choosing this package we were able to purchase the system for 
40% off list price. An ARPANET interface for the Sun server is available and will be 
purchased in the near future. This will make the new server more readily available 
to AIM users outside Stanford. This server is currently up and undergoing test and 
configuration. 

By a special arrangement, we purchased 66 Macintosh II computers directly from 
Apple, each with 1 MB of memory (no disk, no display). At this writing, almost all of 
the the Macintoshes have been installed. Three units have proven defective and are 
being repaired under warranty. 

A package of 10 microExplorer upgrades was ordered from Texas Instruments. They 
arrived during the preparation of this report and will be installed shortly. (The 
features of the microExplorer are described in the Explorers section of this report.) 

10 100 MB disks were purchased from Rodime and installed in the Macintoshes 
receiving the microExplorer upgrades. (A large paging disk is required by the 
microExplorer’s use of virtual memory.) The balance of the Macintoshes were 
outfitted with 20 MB disks, also purchased from Rodime. The choice of Rodime 
disks was suggested by their low price (30% less than Apple’s higher-education 
discount price) and long warranty (12 months). All disks have been installed and so 
far none have failed. Small disks were deemed sufficient, as users are encouraged 
to keep their files on the Sun file server (using the AppleShare filing protocol) for 
reasons of data backup and security. 

Our experience with large displays on other workstations suggested that we wanted 
the largest displays the market could offer at a reasonable price. We chose 33 
Moniterm 19” displays and 33 Moniterm 24” displays, which we were able to obtain 
in a package at 40% off list price. Our experience with other third-party Macintosh 
displays told us that a resolution of no greater than 72 dots/inch is easiest on the 
eyes. Both of the models we purchased conform to this resolution. 

Also from our previous experience with Macintoshes, we knew that many applications 
require more than 1 MB of memory. In our initial purchase, we specified 12 4 MB 
memory upgrades. These were installed in 12 Macintoshes used primarily by staff 
and student developers of Mac software. The original 1 MB of memory was 
removed from each of these machines and added to 12 other machines, making a 
total of 2 MB in each of those machines. (10 of the 12 were the microExplorers.) 
We have already concluded that our memory demands require that we do the same 
with the remaining 1 MB Mac’s Apple’s memory orders are now backlogged 5 
months, so we have ordered from National Semiconductor instead. 

To network the majority of the Macintoshes in the near term, we chose the Farallon 
Phone/Vet system which enabled us to reuse terminal wiring we had previously 
installed in all offices and student areas. In addition to this reason, we chose 
PhoneNet over Apple’s LocalTalk wiring system because PhoneNet permits nets 3-4 
times larger (by reason of different shielding and impedance characteristics). 

To connect the PhoneNet networks to the SUMEX-AIM Ethernet, we chose to install 
7 Kinetics FastPath gateways. The FastPath is a commercial spin off resulting from 

E. H. Shortliffe 42 



5P41 -RR00785-15 Details of Technical Progress 

the SUMEX work on the SEAGATE gateway. Owing to an earlier royalty payment 
agreement with Kinetics, we were able to procure the FastPath gateways at no cost. 
The number of gateways was chosen primarily because of the limited throughput 
characteristics of PhoneNet (230.4 Kb), but also to provide for hardware redundancy. 

To provide printing services for this number of Macintoshes, it was necessary to 
procure additional PostScript printers. Although Apple offers a substantial discount 
on its LaserWriter products to its higher-education customers, the 8 page per minute 
maximum speed (typically less) was deemed too low for our demand printing needs. 
(Other complaints about the design of the LaserWriter concerned the small paper 
tray and toner capacity.) As noted in the Printing Services section of this report, we 
obtained a no-cost PostScript upgrade for our 20 page per minute lmagen 3320 
printer in consideration of our having beta tested the upgrade product. Our 
experience with the basic 3320 product over the past year has been positive. Our 
positive reaction to the PostScript upgrade convinced us that duplicating the 
configuration in our other offices was a good idea. We were able to do this by 
upgrading an lmagen 12/300 to a 3320 PostScript product at a 30% discount. The 
3320 is appealing mostly for its print quality, speed, and minimal maintenance 
requirements. It holds a ream of paper and can print on 11” x 17” paper. 

2.4 - More Details about the Transition Plan 

Having selected the Macintosh and microExplorer systems for our work, many 
additional decisions remained to select, configure, and integrate the routine 
computing environments for our users. The following summarizes this work. 

Text Processing - Editing 

There are many criteria for a system text editor including: 

. Easy to learn 

. Available from various contexts so that similar techniques can be used in 
editing mail, reports, and code. 

. Powerful manipulation facilities allowing structures such as words, lines, 
paragraphs, pages, expressions, code blocks, etc. to be selected, 
moved, copied, reformatted, transposed, etc. 

. Interchange ability allowing at least plain text to be imported from other 
systems and exported back to them. 

l Extensibility in the form of keystroke macros and, ideally, customization 
libraries allowing us to write packages that make the editor “understand” 
a new kind of document structure. 

Most of the commercially available Macintosh editors are targeted to desk-top 
publishing and so are fairly easy to use, but have manipulation facilities only for 
words, lines, paragraphs, sections, and pages. They are sadly lacking in 
understanding of other types of document structures such as programming languages 
or electronic messages. These editors typically offer interchange of “plain text” 
ASCII-only documents. They uniformly offer negligible extensibility. 

Of the systems we’ve looked at, Microsoft Word has proven most useful of those 
currently on the market, so we are using it in the meantime. Early demonstrations 
and tests of FullWrite Professional (marketed by Ashton-Tate) indicate that it may be 

E. H. Shortliffe 



Details of Technical Progress 5P41 -RR00785-15 

superior to Word but its commercial release is just taking place. The non- 
commercial GnuEmacs might offer a complimentary solution as it is an outgrowth of 
the Emacs editor widely used in the AIM community. It offers familiarity and 
powerful extensibility, but it does not offer the easy-to-use interface and multi-font 
display expected on the Macintosh, and having two different editors would 
complicate matters. 

In the coming year we plan to: 

l Track new editor programs, seeking one that better meets our criteria 

. Talk with editor vendors to encourage the addition of the desired 
features 

. Further investigate GnuEmacs for the Macintosh II 

Text Processing - Aids 

Most of the commercial text processing (TP) packages that we‘ve looked at have 
built-in spelling checkers, sorting, hyphenation, forms filling, etc. 

Text Processing - Graphics 

MacDraw, MacPaint, and the other Macintosh drawing programs offer state-of-the-art 
TP graphics capabilities. Pictures from these programs can almost always be 
integrated into a document being prepared with one of the commercial TP systems. 

Text Processing - Formatting 

Most of the commercial TP systems are “What You See Is What You Get 
(WYSIWYG) editors, giving an on-screen representation of the final document during 
editing. The formatting quality and style control is quite good in the better systems, 
but we have found that some documents still require the extremely precise control 
offered by TeX and so are also using it, with it’s 
embedded commands” style interface. 

“compile the manuscript with 

Text Processing - Bibliographic References 

Another major shortcoming of the TP systems is the lack of automatic bibliographic 
reference generation and formatting. In writing scientific papers it is important to 
cite relevant work, and we have found it extremely useful to be able to extract the 
significant information from a large bibliographic database by placing a reference key 
where the citation should appear in the text. We are pursuing TP vendors in the 
hopes that they will implement this facility as well as investigating development of an 
auxiliary program to handle bibliography generation. 

Printing 

Macintosh printing is fairly well developed in that most programs utilize the system- 
defined routines to print. We have installed PostScript on lmagen printers as well as 
Apple LaserWriters and are in the process of bringing up a spooling system on the 
file server. 

E. H. Shortliffe 44 



5P41-RR00785-15 Details of Technical Progress 

Help Facilities 

Most programs have built-in help on the Macintosh, as well as reasonably consistent 
interfaces, but this is not enough. We find that users are still confused so we are 
undertaking to produce short introductory documents to help users get started, and 
to point them in the right direction. We will investigate using HyperCard to organize 
this data. 

System Information 

As the system configuration has gelled we have begun thinking more and more about 
tools and protocols for getting information about the status of the overall system to 
the users and maintainers. We will need to address network loading, user location, 
resource usage (file space, printing, computing cycles), and status information for 
individual elements of the distributed computing environment. We also need access 
to personnel information, bulletin boards, and other shared databases. 

Interpersonal Communication 

See the section on electronic mail development 

Systems Building Tools 

We are developing expertise in the Macintosh Programmer’s Workbench (MPW) 
environment, including with C and PASCAL, and HyperCard. We are also tracking 
Allegro Common Lisp, and Neuron Data’s NExpert. 

Filing 

We plan to stay with the strategy of a few centrally located file servers, but the 
local disks on the Mac’s complicate the system. The foremost concern is data 
backup. We have sketched out a design that would automatically copy new versions 
of documents (files) created on the Macintosh to a reliable file server (i.e., one that 
is backed up to tape). This backup program will allow for exclusion of some files 
(e.g., temporary files) and will make an effort to not have multiple copies of the 
same file on the server. 

Also of significance to users who keep files on the Mac rather than a file server is 
the resultant inaccessibility from other computers. The proposed backup scheme 
would alleviate this problem as well. A full UNIX-based file backup and archival 
system is under consideration for the servers. 

3 - R&D Task Plan -- Update and Progress 

In the presentation to the site visit review team and Council, we layed out a detailed 
plan for our developments (see Figure 1). The following summarizes our pruning and 
reprioritization of those goals, based on the Council review, and progress this past 
year. In general, wherever we showed parallel developments to maintain capabilities 
among Xerox, Symbolics, TI, and other workstations, we have restricted our efforts to 
the Mac and Explorer environments, in accord with the Council recommendation for a 
focus of effort. While we continue to stay abreast of new workstation hardware and 
software, we have concentrated our system development work in the following areas 
for the Mac/Explorer environments. Progress in some areas has been limited by the 
reductions in systems manpower necessitated by NIH cuts in our award funding. 

45 E. H. Shortliffe 



Details of Technical Progress 5P41 -RR00785-15 

3.7 - Remote Workstation Access 

. TIP TCP-IP support: We now have TCP-IP software running in our 
EtherTIPs. 

. Workstation TCP-IP access: Each vendor has supplied the requisite 
software. 

. TELENET X.25/TCP-IP Ethernet Gateway: The DEVELCON gateway has 
been installed and is used by the SUMEX-AIM community for TELENET 
access to the DEC 2060. 

. TELENET TELNET access (TCP-IP): The DEVELCON gateway is a bi- 
directional protocol translating gateway between X.25 and TCP-IP, and 
thus, fulfills this requirement. 

3.2 - Remote Virtual Graphics 

. X Common Lisp client & server: A Common Lisp X (CLX) client has been 
released for TI Explorers, SUN Workstations, and Symbolics. An alpha 
release of a CLX server is expected from TI this Summer. Since Xerox 
is moving its lisp environment to SUN workstations, and CLX runs on 
SUNS, we are not going to port CLX to Xerox D-machines. X runs under 
Apple UNIX (AUX) on MAC II’s but is not implemented for the Apple 
Operating System (This latter operating system has its own graphics 
protocol, MacWorkstation, which we are experimenting with). 

. Common Window Application standard/Implementation: We have not been 
able to give adequate attention to this item because of staff and 
budgetary constraints. It is worth noting that the Common Lisp User 
Environment (CLUE) is a window system defined on top of CLX and is 
currently in use in the KSL. 

. Develop/Extend Virtual Graphics applications: Very little progress has 
been made in this area because of staff and budgetary constraints. We 
intend to emphasize the development of virtual graphics applications 
beginning this summer. 

3.3 - Distributed Mail System 

. InterLisp mail reader/composer: This software is completed, and is now 
part of the Lyric TCP-full-sysout. No further Xerox work is planned. 

. Redesign IMAP protocol (IMAP-2): This has been completed. 

l 2060 IMAP- Server: This has been completed. 

. UNIX IMAP- Server: This has been completed, and is currently being 
alpha tested. 

l Common Lisp mail reader/composer: The TI version should be completed 
and in initial testing by the end of June 1988. No work is planned on a 
Symbolics version. There are similarly no plans to translate the Xerox 
InterLisp client into Xerox Common Lisp given Xerox’s plans to move to 
SUN’s, and the existence of InterLisp within the Xerox environment for 
the foreseeable future. 

E. H. Shortliffe 48 



5P41 -RR00785-15 Details of Technical Progress 

. Update Common Lisp IMAP- Clients: This is completed. 

. UNIX mail client/reader/composer: This project is on the backburner 
because of staff limitations, and the small number of SUN clients in use 
at SUMEX-AIM (a Macintosh-II client is underway for the Apple operating 
system rather than AUX, since the former is the primary OS in use at 
SUMEX-AIM). We have imported a UNIX version of the 2060 mail 
reader/composer called MM-C which was written at Columbia University. 
It is not a distributed mail system in that the reader/composer and mail 
file are assumed to reside on the same machine. The MM-C system will 
be used to provide national community and home mail services on the 
SUN-4 until further versions of the IMAP- clients are available. 

. Enhance reader/composer tools: The reader/composer tools have 
undergone significant continual development since their release to our 
local user community. For example: message filtering was introduced 
earlier this year and one can now filter on free text searches: subject, 
from, to, cc and bee text searches; new recent and old messages; On, 
before or since a given date; messages that are Seen/Unseen, 
FlaggedIUnflagged, Answered/Unanswered, Deleted/Undeleted; and 
message keyword searches. 

3.4 - General Computing Environment 

. Lisp and Al shell environments: Common Lisp now runs on Xerox systems 
using the Lyric sysout, and Lucid Common Lisp is on our SUN 
workstations. The Macintosh-II supports Coral Common Lisp. Finally, 
with the advent of the microExplorer co-processor on the Macintosh II, 
the entire Explorer Common Lisp environment is available on Macintosh 
II’s configured with this board and an Ethernet interface. 

In addition, we have made considerable progress in analyzing the 
performance of Lisp systems on various kinds of hardware, with an eye 
toward guiding our work on future Lisp systems and the trade-off 
between specially microprogrammed Lisp machines and implementations 
on standard workstations. We have also defined the requirements for a 
powerful Lisp programming environment based on the key features of the 
Xerox, Symbolics, and TI environments that we use routinely in our Al 
research work. 

. Distributed File Support: The Xerox Common Lisp RPC/NFS 
implementation has been completed, and Xerox has a strong interest in 
acquiring this software from us and including and supporting an 
enhanced version as part of their standard system release. We would in 
turn receive all improvements to the code. Both TI and Symbolics have 
released an RPC/NFS implementation. Because of budgetary and staff 
limitations this year, we have be unable to make any progress on 
Network management, backup, and archiving tools. This area has been 
given a high priority and we will begin to work on it this summer. 

. Distributed information access: We have installed SUN UNIFY (a powerful 
relational data base system) on our SUN file server and implemented a 
Common Lisp remote procedure call/SQL query interface for Lisp 
machines to experiment with remote data base access. We have also 
been experimenting with the Apple HyperCard system for organizing and 
disseminating information in a distributed community. 

47 E. H. Shortliffe 



Details of Technical Progress 5P41 -RR00785- 15 

. Operations management tools: We have made little progress in this area 
during this report period. 

3.5 - Phasing of the transition to a distributed AIM community 

Experiments in the Stanford/AIM community: Each new piece of hardware or 
software has been tested initially by a selected subset of the Stanford/AIM 
community, e.g., members of the systems staff who are willing to put up with 
problematic software in the alpha test phase. It has then been beta-tested by a 
larger subset of the same community, and then released to any interested member of 
the community as a whole. A typical example is the Xerox IMAP Client, MM-D. After 
several months of alpha testing by two or three members of our systems staff, the 
software was distributed to other KSL research staff members for beta testing and 
suggestions for improvement. Finally, it became a part of the standard Xerox Lyric 
system used by the Stanford Knowledge Systems Laboratory. 

4 - Remote Workstation Access, Virtual Graphics, and Windows 

4.1 - Remote Access 

As we move towards a distributed workstation computing environment for Al research 
in the SUMEX-AIM community (and move away from the centralized, shared DEC 
2060), a number of technical obstacles must be overcome. One of the most 
important is to eliminate the need for the user display to be situated close to the 
workstation computing engine. This is important in order to allow users to work on 
workstations over networks from any location -- at work, at home, or across the 
country. The first step has been getting reliable terminal access operational on all 
workstations. All workstations now have TCP/IP based terminal servers, and TCP/IP 
is being installed in the SUMEX network terminal concentrators. This allows primitive 
(non-graphical) access to the workstation’s abilities. A more comprehensive access 
will be provided through our remote graphics work. 

4.2 - Virtual Graphics 

In order to link the output of workstation displays across networks, it is necessary to 
capture and encode the many graphics operations involved so that they can be sent 
over a relatively low-speed network connection with the same interactive facility as 
if one had the display connected through the dedicated high-speed (30 Mhz) native 
vendor display/workstation connection. A mechanism for doing this is called a 
remote graphics protocol. 

As reported last year, we selected the MIT Project Athena X window system [4] as 
the remote graphics protocol standard for our work, and noted that X is a very 
complete protocol that has been developed over the past several years at MIT’. We 
also reported that an X client2 for Texas Instruments Explorers was being written 
here at SUMEX-AIM, and that TI in conjunction with MIT was developing a server 

‘The X protocol was completely redefined last year. Its most recent version, X.1 1, is assumed in all of 
the discussion that follows. 

2The client software runs on the Lisp machine and sends the graphics protocol commands to the 
remote user display system. The dual of the client is the X server software which runs on the user 
display system and translates the X protocol sent by a client Lisp machine into real graphics pictures and 
mouse actions. 

E. H. Shortliffe 48 



5P41 -RR00785-15 Details of Technical Progress 

~~~ to symbols: m Development activity 

a System beta testing/improvement 

0 System dissemination/update/support 

V Vendor-supplied system 

U86 a7 El88 8/89 al90 8191 

Remote workstation access 
TIP IP-TCP support (serial access) 

Workstation IP-TCP TELNET access 

Symbolics, Tl, SUN 

Xerox 

TELENET X.25/IP-TCP Ethernet gateway 

TELENET TELNET access (IP-TCP) 

Upgrade to IS0 protocol stds 

WorkstatIon services 

Network servers 

TELENET X.2511SO gateway 

Remote Virtual graphics 
Evaluate/select remote .window protocol 

CommonLisp client & server 

Tl Explorer client 

Tl Explorer server 

Symbolics 

Xerox 

UNIX client&server 

SUN 

Macintosh-It 

Other machines (to be announced) 

VG over low bandwidth connections 

Convert to IS0 transport protocols 

Common window application stdlimplement 

Develop/extend VG applications (personal 
links, new display primitives, intelligent 
compression, etc.) 

Distributed mail system 
IMAP design and definition (IMAP-1) 

Prototype 2060 IMAP- server 

InterLisp IMAP- client 

InterLisp mail reader/composer 

Figure 1: Core System Development Schedule 

49 E. H. Shortliffe 



Details of Technical Progress 5P41 -RR00785-15 

8187 aiaa 8189 0I90 8191 

Distributed mail system (cont.) 
CommonLisp IMAP- client 

Tl Explorer 

Symbolics 

Xerox 

CommonLisp mail reader/composer 

Tl Explorer 

Symbolics 

Xerox 

Redesign IMAP protocol (IMAP-2) 

2060 IMAP- server 

UNIX IMAP- server 

Update CommonLisp IMAP- clients 

UNIX mail client/reader/composer 

SUN 

Macintosh-II 

Other machines (to be announced) 

Convert to IS0 transport protocols 

Enhance reader/composer tools (message 
filtering and organization, multi-media 
messages, discussion group tools, etc.) 

Distributed processing 
Evaluate/select interprocess comm. protocol 

CommonLisp IPC 

Implement experimental services 

Distributed resource manager 

User interface to distributed services 

Refine and expand services available 

General computing environment 
lisp and Al shell environments 

Xerox CommonLisp 

SUN CommonLisp environment 

Macintosh-II Lisp and environment 

Other systems/machines (to be annour ccc 

Text processing tools (: 

al86 al07 &.3 8189 al90 8191 

Figure 1: Core System Development Schedule, Continued 

E. H. Shortliffe 50 


